Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements

نویسندگان

  • Jun Hu
  • Zidong Wang
  • Huijun Gao
  • Lampros K. Stergioulas
چکیده

In this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances. The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an individual random variable satisfying a certain probability distribution over the interval [0, 1]. Such a probability distribution is allowed to be any commonly used distribution over the interval [0, 1] with known conditional probability. The aim of the addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

Robust filtering with stochastic nonlinearities and multiple missing measurements

This paper is concerned with the filtering problem for a class of discrete-time uncertain stochastic nonlinear time-delay systems with both the probabilistic missing measurements and external stochastic disturbances. The measurement missing phenomenon is assumed to occur in a random way, and the missing probability for each sensor is governed by an individual random variable satisfying a certai...

متن کامل

Variance-Constrained Filtering for a Class of Nonlinear Time-Varying Systems With Multiple Missing Measurements: The Finite-Horizon Case

This paper is concerned with the robust finitehorizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability fo...

متن کامل

On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)

In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...

متن کامل

Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements

This paper is concerned with the receding horizon filtering problem for a class of discrete time-varying nonlinear systems with multiple missing measurements. The phenomenon of missing measurements occurs in a random way and the missing probability is governed by a set of stochastic variables obeying the given Bernoulli distribution. By exploiting the projection theory combined with stochastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012